排序
清华笔记:计算共形几何讲义 (15)拓扑圆盘的调和映照
图1. 从三维人脸曲面到平面圆盘的调和映照。【上课时间:每周二和周四上午9:50-11:20AM;地点:清华大学,近春园西楼三楼报告厅。欢迎任何有兴趣的朋友,前来旁听指导。】我们前面的课程介绍了...
清华笔记:计算共形几何讲义 (16)拓扑球面的调和映照
【上课时间:每周二和周四上午9:50-11:20AM;地点:清华大学,近春园西楼三楼报告厅。欢迎任何有兴趣的朋友,前来旁听指导。】上次课程,我们讲解了拓扑圆盘间的调和映照。这次,我们讨论拓扑球...
清华笔记:计算共形几何讲义 (17)全纯二次微分(holomorphic quadratic differential)
【上课时间:每周二和周四上午9:50-11:20AM;地点:清华大学,近春园西楼三楼报告厅。欢迎任何有兴趣的朋友,前来旁听指导。】上次课程,我们讲解了调和映照的理论框架。这次课程,我们应用从度...
清华笔记:计算共形几何讲义 (18)拟共形映射(Quasi-Conformal Map)
图1. 曲面注册问题的描述。图2. 曲面间的拟共形映射。左帧曲面的每一个小圆盘区域都映射到右侧椭圆盘区域。椭圆域的偏心率和方向给出了Beltrami系数,Beltrami系数决定了映射。拟共形映射图3. ...
清华笔记:计算共形几何讲义 (19)离散曲面曲率流 (Discrete Surface Ricci Flow ) I
【上课时间:每周二和周四上午9:50-11:20AM;地点:清华大学,近春园西楼三楼报告厅。欢迎任何有兴趣的朋友,前来旁听指导。】图1. 曲面单值化定理:所有带度量的封闭曲面都可以保角地映到三种...
清华笔记:计算共形几何讲义 (20)离散曲面曲率流 (Discrete Surface Ricci Flow)II
为了证明离散曲率流解的存在性,我们需要一些较为独特的数学工具,特别是双曲几何的理论知识。这次课程,我们讲解简单的双曲几何知识,特别是如何将一个带有锥奇异点的平直度量变换成完备双曲度...
清华笔记:计算共形几何讲义 (21)离散曲面曲率流 (Discrete Surface Ricci Flow)III
以前章节,我们介绍了曲面曲率流的一种离散形式-离散Yamabe流,主要操作是顶点缩放(Vertex Scaling)来共形变换度量来实现目标曲率。在实践中,往往多面体曲面的三角剖分是固定的。如果给定一...
清华笔记:计算共形几何讲义 (22)离散曲面曲率流 (Discrete Surface Ricci Flow)IV
设计黎曼度量又是计算机图形学、计算机视觉、计算力学、医学图像等领域最为基本的问题之一。许多工程中的关键问题可以归结为设计一种特殊的黎曼度量。离散曲面Ricci流是通过曲率来设计黎曼度量...
清华笔记:计算共形几何讲义 (23)离散曲面曲率流 (Discrete Surface Ricci Flow)V
前面我们介绍了离散曲面的曲率流理论,曲面上配备着欧氏度量带有奇异点。这次,我们介绍双曲离散曲面的曲率流理论。对于欧拉示性数为负的曲面,其单值化度量自然是双曲度量。双曲度量具有非常多...
ACIS,Parasolid,OPENCASCADECAD几何内核对比
1.ACISACIS是美国spatial technology公司的产品,是应用于CAD系统开发的几何平台。它提供从简单实体到复杂实体的造型功能,以及实体的布尔运算、曲面裁减、曲面过渡等多种编辑功能,还提供了...
Geometry Surface of OpenCascade BRep
Geometry Surface of OpenCascade BRep eryar@163.com 摘要Abstract:几何曲面是参数表示的曲面 ,在边界表示中其数据存在于BRep_TFace中,BRep_TFace中不仅包括了几何曲线,还包含用于显示的离...
Tcl Tk Introduction
Tcl Tk Introduction eryar@163.com 摘要Abstract:Tcl/Tck脚本可以很容易实现用户自定义的命令,方便的创建图形化的用户界面GUI,所以Tcl和Tk的应用领域几乎覆盖了图形和工程应用的全部范围,...