排序
清华笔记:计算共形几何讲义 (2)代数拓扑
这次课程,我们简单介绍曲面基本群(一维同伦群)的理论梗概。主要概念有基本群的定义,表示,计算。然后我们介绍覆盖空间理论,特别是万有覆盖空间理论,曲线同伦检测算法。【1】给出了课程的...
清华笔记:计算共形几何讲义 (4)单纯同调
这次课程,我们介绍单纯同调理论。在代数拓扑中,有单纯同调、奇异同调和de Rham同调理论。它们所用的数学工具不同,但是理论彼此等价。【1】给出了本课程的视频链接。 基本方法代数...
清华笔记:计算共形几何讲义 (6)上同调的霍奇理论
这次课程,我们介绍霍奇分解定理,这一定理在图形学、视觉和网络中,应用非常广泛。直观而言,我们考察曲面上的切向量场,如果这个向量场光滑得无以复加,那么这个向量场被称为是调和场(harmon...
清华笔记:计算共形几何讲义 (7)矢量场设计
漫长的课程至此,我们终于可以应用所学的理论工具来分析解决一些实际问题了。我们学习了曲面的代数拓扑和 微分拓扑,de Rham上同调的霍奇理论,作为应用实例,我们讨论如何构造曲面上光滑矢量场...
清华笔记:计算共形几何讲义 (8)狭缝映射(Slit Map)的存在性
我们用较为初等的复变函数方法证明一种共形映射的存在性:狭缝映射(slit mapping)。如图所示,给定亏过为0的多连通曲面,存在共形映射将其映射到平面区域,每个边界的联通分支都被映成一条狭...
清华笔记:计算共形几何讲义 (8)狭缝映射(Slit Map)的存在性
我们用较为初等的复变函数方法证明一种共形映射的存在性:狭缝映射(slit mapping)。如图所示,给定亏过为0的多连通曲面,存在共形映射将其映射到平面区域,每个边界的联通分支都被映成一条狭...
清华笔记:计算共形几何讲义 (9)全纯微分
双全纯函数图1. Escher 效果:双全纯函数是复平面间的共形映射。黎曼面图2. 黎曼面的概念。黎曼面和黎曼度量黎曼面之间的全纯映射图3. 黎曼面间的双全纯映射。亚纯微分黎曼面上的微分形式的定义...
清华笔记:计算共形几何讲义 (10)纪念米尔扎哈尼——泰希米勒(Teichmuller)空间
多年以前,我还在哈佛求学,导师丘成桐先生叮嘱我要研究柯蒂斯. 麦克马伦(Curtis McMullen)的理论,McMullen用组合的方法来研究共形结构,非常适合计算。丘先生自己也在哈佛的研究生课程上讲解...
清华笔记:计算共形几何讲义 (11)黎曼映照(Riemann Mapping)的存在性
共形几何中最为大家所熟识的定理大概非黎曼映照莫属,其证明方法也是丰富多彩,各有千秋。这里,我们回忆一下经典的复分析手法,朴素初等,但是非常具有代表性。在复分析中,标准共形映射的存在...
清华笔记:计算共形几何讲义 (12)极值长度
图1. 圆柱面的共形模。拓扑等价的度量曲面是否共形等价,亦即拓扑同胚的带有黎曼度量的曲面间是否存在保角双射,这是一个微妙的问题。几何上,我们需要寻找共形变换下的全系不变量,通过比较不...
清华笔记:计算共形几何讲义 (13)Koebe 迭代收敛性
【上课时间:每周二和周四上午9:50-11:20AM;地点:清华大学,近春园西楼三楼报告厅。欢迎任何有兴趣的朋友,前来旁听指导。】图1. 亏格为0、带有多个边界的曲面到平面圆域(Circle Domain)的...
清华笔记:计算共形几何讲义 (14)共形模的计算
【上课时间:每周二和周四上午9:50-11:20AM;地点:清华大学,近春园西楼三楼报告厅。欢迎任何有兴趣的朋友,前来旁听指导。】我们前面详尽地介绍了各种拓扑曲面共形不变量(共形模)的概念和理...