OpenCASCADE点向圆柱面投影
OpenCASCADE的类Extrema_ExtPElS提供了点到基本曲面的投影计算功能,距离可能是最大值或是最小值。如下图所示的点到圆柱的投影会有两个投影点P1和P2,则点到圆柱的距离的最小值是P到P1的距离,最大值是P到P2的距离。本文主要是对此类中点到圆柱的投影算法进行分析。
类Extrema_ExtPElS类中计算点到圆柱的投影源码列出如下:
结合源码的注释可以看出点P到圆柱S的投影主要按有如下步骤:
l 计算点P到以圆柱S轴线为法线的平面的投影点Pp;
l 若点P在轴线上,则计算失败返回;
l 计算点Pp在圆柱U方向的参数U1(角度);
l 将参数U1(角度)加180度得到参数U2;
l 计算参数(U1,V),(U2,V)对应在圆柱面上的点;
上述实现主要也是使用向量的运算,所以程序简单且性能高。其中保存的距离是距离的平方值,这种方式主要考虑的是自带的开方函数性能,除非后面要用到距离才会自己去开方,这样也是提供性能的一种处理方式。
OpenCASCADE的向量类gp_Vec提供了一个函数AngleWithRef(),查看源码可知这个函数主要是计算两个向量之间的夹角,其中参数向量Ref是用来处理角度的正负。当两个向量叉乘的向量与参考向量Ref反向时,也会将得到的角度值取负。
下面通过一个简单的小程序来将计算结果在Draw Test Harness中可视化,这样可以直观地验证一下:
将生成的脚本文件加载到DRAW中得到如下图所示的结果:
从上图可以看出,投影得到的两个点P1,P2的高度值与点P是相同的。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END
暂无评论内容