Games102_lecture2几何建模与处理基础_数据拟合

在这里插入图片描述

1 回顾

在这里插入图片描述
1.有一百万个数据,用1000个系数就可以储藏起来了,起到了压缩的作用
2.预测作用.
在这里插入图片描述
拟合函数的好坏?

误差为0,一般不好。

分段线性插值:
在这里插入图片描述
光滑插值函数:

在这里插入图片描述
拟合函数的时候有领域特性。

在这里插入图片描述

数据拟合的方法论

到哪里找?
找那个?
怎么找?

在这里插入图片描述
在这里插入图片描述

2 多项式插值

在这里插入图片描述

没有听懂?

1 技巧1

计算出L0~Ln

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 技巧2 更方便的求解表达

找到一个多项式,在0,1,2阶是一样的。

需要做预计算和预存储

在这里插入图片描述

3 插值存在的问题

eigen库要学会使用。
稀疏矩阵:很多元素是0.
在这里插入图片描述

病态

用条件数来衡量。

一个小扰动,会对解影响很大。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
原因:
多项式指数级很高,用插值容易病态。在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 多项式逼近

在这里插入图片描述

1 最小二乘

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4 函数空间以及基函数

在这里插入图片描述

1 Bernstein多项式

矩阵的本质是不同的基函数之间做变换。

在这里插入图片描述
在这里插入图片描述

CAGD:计算机辅助设计
在这里插入图片描述

5 RBF函数插值/逼近

1 Gauss 函数

帽子函数,处处不为零
在这里插入图片描述

2.RBF函数拟合

高斯线性函数
在这里插入图片描述

sigema取多少比较好呢?
在这里插入图片描述
在这里插入图片描述

sigam和方差求出来,就不用试了。
在这里插入图片描述

6 换个角度看拟合函数

1.Gauss

gauss函数试线性无关的。。

ai和bi足够多,n足够大,产生的函数空间同样可以逼近所有函数。
多项式次数足够大,可以逼近所有函数。
那这两个有啥不同的地方呢?

在这里插入图片描述
在这里插入图片描述

2 RBF网络:

神经网络的角度来看:
在这里插入图片描述
网络参数,
网络节点数:n
激活函数:高斯函数
在这里插入图片描述

在数学上一旦碰到非空,非线性的函数,在数学上没有法子。

函数很复杂,导数没有求,求他的极小值,除非他是凸的,在数学上也能找到局部最优解,全局最优解没有办法保证找到。
在这里插入图片描述
在这里插入图片描述
神经网络函数其实就是一个激活函数。
数学的本质就是在做拟合,只不过是把他
在这里插入图片描述

网络只要节点足够多,系数足够多,就有能力逼近你。

7 高维情形:多元函数

把函数搞明白了,高维就是变量多了。

矩阵和张量就是多维数据的表达形式。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
函数进行复合了,线性相乘。激活函数每一层都可以选的不一样。
规模就是网络中的权, 每层之间一交叉就成了1万个变量了。
调参就是调函数空间,网络结构就是空间,里面的参数个数就是自由度,减少自由度就是进行共享。
在这里插入图片描述
在这里插入图片描述

8 深度学习框架

在这里插入图片描述

9 深度学习的方法

他统一了函数表达,用一个函数形式表达了所有的东西,
在这里插入图片描述

10 下周内容

在这里插入图片描述

11 作业情况

在这里插入图片描述
在这里插入图片描述

12 作业2

在这里插入图片描述

13 视频

https://www.bilibili.com/video/BV1NA411E7Yr?p=2

© 版权声明
THE END
喜欢就支持一下吧
点赞208 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容