【数学建模】4 马尔萨斯人口论

本博客是慕课-全国大学生数学建模竞赛组委会开设的建模竞赛课学习笔记

1 数学模型分类

(1)数理型:统计回归
(2)机理型:

2 马尔萨斯人口论的引入

群体增长的趋势是什么
(1)基本论题
人类食物供给增长趋势无法跟上人口增长的趋势
(2)论证方式
公理化
(3)基本公理
• 食物为人类生存所必需
• 两性之间的情欲是必然,而且几乎会保持现状
(3)增长理论
人口有几何增长的趋势,如报数
1、2、4 、8、16。。。
食物供应只有算数增长的趋势(即是按现行函数增长的趋势)如报数
1、2、3、4、5、6。。。
人类会有无限增长的趋势,直至食物供应的极限为止
结论: 要控制人口的无节制增长
(4)马尔萨斯问题
P(t)时候的人口数量。

\\color{red}{已知当前或过去某个时刻的人口数量,预测未来某个时刻的人口?}


t

\\color{red}{汉字格式遥远未来的趋势(t趋于无穷)?}

t
解:以下是早期的马尔萨斯的模型解法。当问题随着世界的变化,各种因素的需要考虑进去,后面还有改进的马尔萨斯模型如logistic模型、lesile模型,甚至还有更复杂的模型去解决这类问题。
假如2002年和人口总数量是怕p,则2002年刚出生的人数和死亡的人数就分别是bp和dp,所以2003年初的人口总数将是
p+bp-dp = (1+b-d)p = (1+r)p
这里的r就是人口自然增长率,这个模型是离散的。
P(t+

Δ

\\Delta

Δt) – P(t) = rP(t)

Δ

\\Delta

Δt
P(t+dt) – P(t) = rP(t)dt
得到以下的微分模型

d

P

(

t

)

d

t

=

r

P

(

t

)

\\frac{dP(t)}{dt} = rP(t)

dtdP(t)=rP(t)
P(t0) = P0
得到人口指数模型
P(t) = P0er(t-t0)
在这里插入图片描述

一个问题的思考方式

3 Logistic模型

d

P

(

t

)

d

t

=

r

P

(

t

)

\\frac{dP(t)}{dt} = rP(t)

dtdP(t)=rP(t)
P(t0) = P0
(1)以上的r再当下已经不是一个常数了,是一个函数且和当前人口量相关。
r(t) = r(P(t))
改进公式
r(t) = r(P(t)) =

r

(

1

P

(

t

)

K

)

r(1-\\frac{P(t)}{K})

r(1KP(t))
P(t0) = P0
Logistic模型
在这里插入图片描述

(2)Logistic模型离散化

d

N

d

t

=

r

N

(

1

N

K

)

\\frac{dN}{dt} = rN(1-\\frac{N}{K})

dtdN=rN(1KN)

d

P

(

t

)

d

t

=

r

P

(

t

)

\\frac{dP(t)}{dt} = rP(t)

dtdP(t)=rP(t)
考虑这个模型的离散化

Δ

N

Δ

t

=

r

N

(

1

N

K

)

\\frac{\\Delta N}{\\Delta t} = rN(1-\\frac{N}{K})

ΔtΔN=rN(1KN)
变成了差分方程

Δ

N

=

N

t

+

1

N

t

\\Delta N = N(t+1) -N(t)

ΔN=Nt+1Nt

Δ

t

=

1

\\Delta t = 1

Δt=1

N

t

+

1

N

(

t

)

=

r

N

(

1

N

K

)

N(t+1) – N(t) = rN(1-\\frac{N}{K})

Nt+1N(t)=rN(1KN)

这里的时间离散长取为1,每一代就是一个时间步

N

t

=

1

+

r

N

(

t

)

r

K

)

N

2

(

t

)

N(t)= (1+r)N(t) – \\frac{r}{K})N^2(t)

Nt=1+rN(t)Kr)N2(t)
取定参数K,考虑不同的参数r
r = 1.9
在这里插入图片描述
r = 2.2
在这里插入图片描述

r = 2.5
在这里插入图片描述

r = 2.55
在这里插入图片描述

r不断的增大,周期不断的翻倍。出现倍周期现象。
在这里插入图片描述

4 Lesile模型

(1)概念
当人口总量一样,分布不一样的时候,以上的模型是不足以分析的。还有一个年龄的分布。
引入一个向量表示年龄分布,N(t) = [n0 n1 … ns]。把年龄分为多少段,就有多少参数。
所以当求某个t时刻的人口数量,计算公式如下图:
在这里插入图片描述

假设知道Lj矩阵的特征值和特征向量。
在这里插入图片描述

那每个时刻的N一定可以用特征向量的线性组合表示。
在这里插入图片描述

假设首特征值大于所有的特征值
在这里插入图片描述
在这里插入图片描述

首特征值的阿晓和相应的特征向量决定了模型的渐进性质。当首特征值大于1时候,那人口会越长越多,当小于1时,人类会走向灭亡。当等于1时,会进入一个稳态。
(2)一个学者说
所有的模型都是错的,但有些是有用的。模型越来越复杂,是一个不得已的选择。
在这里插入图片描述

5 更复杂的模型

(1)引入新的函数,既有t的函数又是年龄a的函数,称为多元函数P(a,t)。也是二元函数
在这里插入图片描述

(2)考虑其他因素
比如地域因素。或者其他确定的因素,那就要使用随机模型。推荐的书,包含了各种数学模型。
在这里插入图片描述

© 版权声明
THE END
喜欢就支持一下吧
点赞800 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容